

APPLICAION NOTE

Жидкостная хроматография Масс-спектрометрия Авторы:

Yanniek Lagarde Nick de Louw Henk Lamers NutriControl BV Veghel, Netherlands Aristide Ganci PerkinElmer, Inc. Milan, Italy Ignazio Garagus PerkinElmer, Inc. Rodgau, Germany

Определение пестицидов в кормах для животных методом ВЭЖХ-МС/МС

Введение

Наиболее распространённый путь попадания пестицидов в организм домашнего скота – это их применение в процессе роста, хранения и транспортировки сельскохозяйственных культур, использующихся для приготовления кормов [1]. В большинстве случаев в состав рациона животных входят кормовые сельскохозяйственные культуры, сено, силос, солома.

Европейской комиссией (The European Commission (EC)) установлены предельно допустимые концентрации (ПДК) (MRLs - maximum residue levels) пестицидов в пищевых продуктах, которые подробно изложены в Регламенте Европейского Парламента и Совета Европейского Союза 396/2005. Для пестицидов, не перечисленных в регламенте, по умолчанию применяется ПДК 0.01 мг/кг [2].

Исторически данный регламент разрабатывался прежде всего для пищевых продуктов, однако, в последнее издание вошли требования по ПДК пестицидов в кормах для животных и ингредиентов для их приготовления. Установленные нормы относятся к случаям, когда корм находится в открытой продаже или непосредственно скармливается животным.

Генеральный директорат по вопросам здоровья и безопасности пищевых продуктов (European Commission's General-Directorate for Health and Food Safety (DG SANTE)) опубликовал руководство по аналитическому контролю качества, в котором указаны валидационные требования для аналитических методов определения остаточных количеств пестицидов в продуктах питания и кормах для животных. Последнее опубликованное руководство SANTE/12682/2019 [3] включает требования для отклонений времен удерживания, диапазону ионных соотношений (количественного и подтверждающих ионов), критериев селективности для ВЭЖХ-МС/МС методов определения остаточных количеств пестицидов. Для процедуры пробоподготовки согласно руководству SANTE/12682/2019 наиболее часто используется метод QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe - Быстро, Просто, Дёшево, Эффективно, Надежно и Безопасно), основанный на экстракции пестицидов из матрицы ацетонитрилом с последующей очисткой экстракта с помощью дисперсионной твердофазной экстракции Д-ТФЭ [4]. Поскольку ацетонитрил хорошо подходит для экстракции пестицидов и совместим с методом ВЭЖХ-МС/МС, этот способ стал предпочтительным для пробоподготовки [5-6].

Цель данной работы - разработка простого, быстрого и селективного мультикомпонентного метода, обеспечивающего количественное определение 94 пестицидов с концентрациями ниже 0.01 мг/кг в кормах для животных с помощью ВЭЖХ-МС/МС PerkinElmer LX50-QSight 220.

Экспериментальная часть

Оборудование и программное обеспечение.

Хроматографическое разделение проводили на УВЭЖХ LХ50 с масс-спектрометрическим детектором QSigh 220 PerkinElmer (масс-анализатор - тройной квадруполь) с двойным источником ионизации.

Управление прибором, сбор и обработку данных осуществляли с помощью программного обеспечения Simplicity 3QTM (PerkinElmer).

Реактивы и стандартные растворы.

Все используемые реактивы и растворители класса «для ВЭЖХ-МС».

Стандартные образцы пестицидов были приобретены в Restek в виде 6 готовых смесей с концентрацией 1000 мкг/мл. В качестве внутреннего стандарта (ВС) использовали трифенилфосфат (ТФФ). Степень извлечения ТФФ составила 70-120%.

Для оценки матричных эффектов калибровочные кривые целевых компонентов строили с использованием матрицы и без нее. В обоих случаях для построения кривых использовали пять калибровочных растворов с концентрациями целевых компонентов 0.1, 5, 10, 50 и 100 нг/мл. В качестве матрицы использовали образец кормовой кукурузной муки. Каждый раствор анализировался не менее 3 раз (n=3).

Пробоподготовка.

Процедуру пробоподготовки проводили по валидированному методу QuEChERS, который может использоваться для рутинных анализов широкого спектра образцов корма и добавок (кукуруза, пшеница, ячмень, рожь, жиры, масла, гидролизаты и другие кормовые добавки).

1. Навеску образца от 2.5 до 10 г (в зависимости от типа анализируемого корма) гомогенизировали и помещали в центрифужную пробирку объемом 50 мл.

2. К содержимому пробирки добавляли буферные соли и 20 мл воды. В случае, если образец содержал много влаги, объем добавленной воды корректировали исходя из ее количества в образце.

Для предотвращения комкования содержимое пробирки интенсивно встряхивали в течение 30 мин.
К содержимому пробирки добавляли 50 – 200 мкл (в зависимости от навески образца) рабочего раствора внутреннего стандарта и 10 мл ацетонитрила, после чего содержимое пробирки встряхивали в течение 30 мин и центрифугировали при 5000 об/мин в течение 5 мин.

5. После центрифугирования отбирали супернатант (ацетонитрильный слой), помещали его в пробирку для центрифугирования объемом 15 мл и выдерживали ее в морозильной камере в течение 2 часов.

6. Содержимое пробирки дополнительно центрифугировали при 5000 об/мин в течение 2 мин, отбирали 5 – 6 мл экстракта и помещали его в пробирку для Д-ТФЭ.

7. Содержимое пробирки для Д-ТФЭ встряхивали не менее 2 мин и центрифугировали при 5000 об/мин в течение 2 мин.

8. После центрифугирования отбирали 1 мл супернатанта и добавляли к нему 10 мкл 5% раствора муравьиной кислоты в ацетонитриле для стабилизации пробы.

9. Отбирали 50 – 200 мкл полученного экстракта (в зависимости от навески образца) и упаривали его в токе азота, после чего перерастворяли остаток в 50 мкл чистого ацетонитрила.

Хроматографические условия и параметры масс-спектрометра.

Хроматографические условия и параметры источника ионизации масс-спектрометрического детектора представлены в таблице 1. МRМ переходы и оптимизированные параметры масс-анализатора для MRM переходов определяемых соединений представлены в таблице 2. При создании MC метода параметры MRM переходов автоматически генерировались путем выбора интересующих пестицидов из встроенной библиотеки программного обеспечения Simplicity 3Q. В зависимости от ожидаемой ширины пика скорость сбора данных автоматически оптимизировалась соответствующим встроенным алгоритмом.

Таблица 2. Хроматографические условия и параметры источника ионизации.

Хроматографическая колонка	Quasar	Quasar SPP C18 Pesticide column, 100x4.6mm, 2.7 µm (N9306880)									
Подвижная фаза	А: 3 мМ В: 3 мМ	A: 3 мМ формиат аммония в растворе 0.1% муравьиной кислоты в воде B: 3 мМ формиат аммония в растворе 0.1% муравьиной кислоты в метаноле									
		Программа градиентного элюирования									
	Шаг	Время (мин)	Поток (мл/мин)	%A	%B						
	1	0	0.8	95	5						
	2	0.5	0.8	95	5						
	3	4	0.8	50	50						
	4	12 0.8 0 100									
	5	5 15 0.8 0 100									
	6	15.1	0.8	95	5						
	7	18	0.8	95	5						
Температура автодозатора				10°C							
Температура термостата				40°C							
Вводимый объем	10 мкл										
		Параметр	ы источника и	онизации							
Режим ионизации		ESI	с переключение	ем полярности							
Напряжение ESI +/-	5100 B / -4500 B										
Осушающий газ	120 единиц										
Распыляющий газ		350	единиц								
Температура HSID ин	терфейс	a 2009	°C								
Температура источни	ка	3159	°C								
Режим работы масс-а	нализат	opa MR	М								

Таблица 2. Времена удерживания *t*_R (мин), MRM переходы и оптимизированные параметры масс-анализатора для MRM переходов определяемых соединений.

Компонент	<i>t</i> R	ESI	Р И ¹	КИ ²	CE ⁴	EV ⁵	CCL ⁶	ПИ ³	CE	EV	CCL
	(мин)	+/-	[m/z]	[m/z]				[m/z]			
Мевинфос	5.77	+	225	127	-23	23	-40	193	-11	22	-40
Аллидохлор	6.28	+	174	98	-18	11	-37	41	-39	8	-37
Трициклазол	6.28	+	190	163	-27	5	-66	136	-37	32	-54
2,4-Диметилфенил	6.38	+	150	107	-30	23	-43	106	-46	22	-51
формамид											
Тербацил	6.91	-	215.1	159.1	21	-3	48	161.1	22	-17	48
Гексазинон	6.96	+	253.2	171.1	-23	27	-50	71.3	-46	21	-54

¹ – Р И родительский ион; ² – К И количественный ион; ³ – П И подтверждающий ион.

 4 – **CE** (Collision energy) – энергия соударений.

⁵ – EV – (Entrance Voltage) – входное напряжение на интерфейсе переноса ионов в масс-анализатор.

⁶ – CCL2 (Collision Cell Lens 2 voltage) – напряжение на входной линзе ячейки столкновений.

Таблица 2. (продолжение)

Компонент	<i>t</i> R	ESI	Р И1	КИ ²	CE ⁴	EV ⁵	CCL ⁶	ПИ ³	CE	EV	CCL
	(мин)	+/-	[m/z]	[m/z]				[m/z]			
Флутриафол	7.53	+	302	123	-45	19	-64	95	-69	30	-60
Атразин	7.71	+	216	174	-25	29	-44	176	-23	8	-40
Метазахлор	7.76	+	278.1	134.2	-33	17	-60	210.1	-11	17	-48
Ленацил	7.84	+	235	153	-24	12	-40	136	-44	10	-60
Норфлуразон	7.85	+	304	284	-32	38	-75	160	-41	22	-71
Пропахлор	7.90	+	212	170	-20	23	-43	94	-37	22	-59
Азинофос-метил	8.04	+	318.1	260.8	-11	6	-48	124.9	-30	17	-52
Фосмет	8.07	+	318	160	-34	20	-56	76.9	-69	5	-72
Метакрифос	8.09	+	241.1	125.1	-26	20	-46	209	-11	20	-50
Дифенамид	8.17	+	240.1	134	-28	29	-57	91	-60	29	-57
Флуридон	8.19	+	330.1	310	-40	53	-96	259	-66	40	-116
Ипродион	8.19	+	330.2	259.2	-67	68	-106	294.2	-57	59	-150
Диметахлор	8.24	+	256	224	-20	7	-53	148	-35	8	-61
Пириметанил	8.27	+	200.1	107.1	-33	31	-54	183.1	-30	8	-62
Линурон	8.35	+	249	159.9	-24	22	-59	182	-21	22	-51
Кломазон	8.38	+	240.1	125	-28	28	-45	127	-28	27	-49
Пропанил	8.38	+	218	162.1	-18	28	-44	127.1	-35	26	-56
Флудиоксонил	8.54	-	247.1	180	37	-39	80	126.1	42	-39	76
Флутоланил	8.71		324	262	-26	21	-67	242	-35	22	-71
Тербутилазин	8.75	+	230.1	96	-37	29	-70	174.1	-25	28	-54
Малатион	8.80	+	331.2	127.1	-16	25	-60	285.2	-11	24	-60
Паклобутразол	8.80	+	294.1	125.1	-59	25	-86	70.1	-30	29	-50
Пропизамид	8.84	+	256	190	-20	22	-51	173	-30	22	-51
Миклобутанил	8.97	+	289	70	-27	7	-56	125	-47	32	-60
Исазофос	9.04	+	314	120	-37	28	-68	162	-23	28	-56
Пиридафентион	9.05	+	341.1	189	-29	36	-68	92	-55	32	-76
Триадимефон	9.10	+	294.1	197.1	-20	9	-58	225.1	-17	21	-62
Триазофос	9.10	+	314	162	-25	29	-56	119	-48	18	-68
Триадименол (байтан)	9.11	+	296.1	70	-33	5	-50	70	-74	17	-70
Фолпет	9.13	+	296.2	227.2	-17	12	-60	199.2	-21	12	-56
Азинофос-этил	9.19	+	346.1	132.2	-30	4	-56	77.2	-67	4	-72
Флукинконазол	9.24	+	376	349	-27	27	-81	307	-36	35	-105
Бупиримат	9.35	+	317	166	-30	26	-60	108	-37	39	-80
Фипронил	9.44	-	435	250	39	-22	84	330	23	-1	80
Ацетохлор	9.57	+	270	148	-25	8	-49	133.1	-45	14	-49
Алахлор	9.60	+	270.1	162.2	-35	7	-60	238.2	-16	14	-52
Ципродинил	9.64	+	226	93	-47	31	-64	77	-57	2	-72
Этридиазол	9.64	+	247.1	165.1	-30	61	-50	167.1	-21	57	-66
Флусилазол	9.64	+	316	247	-25	22	-72	165	-36	22	-64

¹ – Р И родительский ион; ² – К И количественный ион; ³ – П И подтверждающий ион.

 4 – **CE** (Collision energy) – энергия соударений.

 5 – EV – (Entrance Voltage) – входное напряжение на интерфейсе переноса ионов в масс-анализатор.

⁶ – CCL2 (Collision Cell Lens 2 voltage) – напряжение на входной линзе ячейки столкновений.

Таблица 2. (продолжение)

Компонент	<i>t</i> R	ESI	Р И1	КИ ²	CE ⁴	EV ⁵	CCL ⁶	ПИ ³	CE	EV	CCL
	(мин)	+/-	[m/z]	[m/z]				[m/z]			
Фенамифос	9.65	+	304.2	217.1	-30	33	-66	202.1	-49	30	-90
Метолахлор	9.70	+	284.2	176.2	-31	21	-68	252.2	-18	23	-56
Паратион (тиофос)	9.71	+	292.1	236	-20	17	-64	123.1	-47	21	-68
Тетрахлорвинфос	9.77	+	365	127.1	-21	29	-64	204	-49	30	-92
Квиналфос	9.80	+	299	162.9	-34	35	-64	96.9	-46	6	-56
Сульфотеп	9.82	+	323	97	-70	22	-88	171	-19	22	-60
Фентион	9.90	+	279	169.1	-25	31	-58	247	-17	27	-54
Тебуконазол	9.91	+	308	70	-27	5	-54	125	-61	13	-102
Пенконазол	9.99	+	284.1	70.2	-36	41	-54	159	-37	41	-74
Винклозолин	9.99	+	286.1	161.1	-43	40	-66	163.1	-33	40	-62
Эдифенфос	10.06	+	328	283	-24	1	-76	109	-66	8	-76
Диазинон	10.07	+	305	169	-30	28	-60	97	-47	28	-68
Фонофос	10.07	+	247	109	-28	16	-48	137	-15	18	-48
Пропизохлор	10.09	+	284	224	-14	22	-55	212	-21	21	-59
Хлорфенвинфос	10.11	+	359	155.1	-18	28	-62	127.1	-30	25	-66
Кумафос	10.13	+	363	227	-33	21	-80	307	-23	22	-72
Фозалон	10.14	+	368	182	-25	29	-60	111	-57	27	-64
Пиримифос-метил	10.19	+	306.2	108.1	-42	41	-68	164.1	-29	41	-68
Пирахлофос	10.22	+	361	111	-86	36	-88	138	-57	37	-88
Бромфенвинфос	10.24	+	405	155.1	-18	26	-72	99.1	-50	25	-68
Толклофос-метил	10.28	+	301	175.1	-35	24	-72	269.1	-21	29	-64
Форат	10.29	+	261	75.3	-36	9	-44	97	-41	7	-68
Пиразофос	10.31	+	374.2	222.2	-29	37	-68	194.1	-43	36	-84
Прохлораз	10.37	+	376.1	308.1	-12	22	-64	70.2	-41	21	-72
Хлорпирифос-метил	10.42	+	321.7	125.2	-30	15	-60	290	-21	27	-60
Дисульфотон	10.44	+	275	61.2	-50	10	-48	89.2	-36	12	-48
ЭПН	10.48	+	324	157.2	-34	26	-68	296.2	-19	31	-60
Пебулат	10.63	+	204	128	-16	22	-39	57	-25	22	-43
Ди-аллат	10.75	+	269.9	86	-21	28	-49	109	-40	28	-65
Трифлумизол	10.75	+	346	278	-15	12	-62	73	-22	8	-58
Циклоат	10.81	+	216	83	-24	8	-45	154	-17	28	-41
Претилахлор	10.94	+	312.1	176.1	-35	22	-60	252.2	-23	22	-64
Профенофос	11.00	+	373	303	-25	27	-82	128	-59	29	-94
Тербуфос	11.08	+	289	103.2	-14	5	-50	57.1	-71	6	-82
Пиримифос-этил	11.09	+	334.2	198.2	-28	35	-68	182.1	-32	25	-68
Тебуфенпирад	11.19	+	334.2	117.1	-59	51	-72	145	-36	49	-68
Этион	11.20	+	385	199	-15	21	-72	171	-26	21	-64
Метоксихлор	11.20	+	345.1	219.9	-24	36	-72	185.1	-37	38	-80
Оксадиазон	11.20	+	362	177	-44	5	-79	220	-32	9	-75

¹ – Р И родительский ион; ² – К И количественный ион; ³ – П И подтверждающий ион. ⁴ – CE (Collision energy) – энергия соударений.

 5 – EV – (Entrance Voltage) – входное напряжение на интерфейсе переноса ионов в масс-анализатор.

⁶ – CCL2 (Collision Cell Lens 2 voltage) – напряжение на входной линзе ячейки столкновений.

Таблица 2. (продолжение)

Компонент	<i>t</i> R	ESI	Р И1	КИ ²	CE ⁴	EV ⁵	CCL ⁶	ПИ ³	CE	EV	CCL
	(мин)	+/-	[m/z]	[m/z]				[m/z]			
Пирипроксифен	11.30	+	322	96	-21	3	-66	185	-31	5	-66
Пиперонилбутоксид	11.35	+	356.2	177.2	-24	10	-60	119	-48	10	-60
Сульпрофос	11.45	+	323	219	-22	22	-60	247	-16	16	-60
Три-аллат (триаллат)	11.53	+	304	143	-35	25	-63	86	-25	22	-55
Карбофенотион	11.55	+	343	157	-25	15	-60	199	-12	2	-64
Хлортиофос	11.59	+	361	305	-21	19	-72	333	-16	21	-68
Пропаргит	11.62	+	368.2	231.1	-16	16	-62	175	-23	22	-58
Протиофос	12.16	+	345	241	-25	23	-72	269	-16	5	-68
Лептофос	12.23	+	412.8	171	-32	21	-84	77	-99	21	-108
Пиридабен	12.23	+	365.2	147.1	-34	19	-72	309.2	-14	21	-60
Этофенпрокс	12.58	+	394.2	177.1	-21	4	-60	183.1	-36	22	-60

¹ – Р И родительский ион; ² – К И количественный ион; ³ – П И подтверждающий ион.

 4 – **CE** (Collision energy) – энергия соударений.

⁵ – EV (B) – (Entrance Voltage) – входное напряжение на интерфейсе переноса ионов в масс-анализатор.

⁶ – CCL2 (Collision Cell Lens 2 voltage) – напряжение на входной линзе ячейки столкновений.

Обсуждение результатов

На рисунке 1 показано наложение MRM хроматограмм 94 определяемых пестицидов с концентрацией 10.0 нг/мл в матрице кормовой кукурузной муки (модельный раствор).

Рисунок 1. Наложение MRM хроматограмм 94 определяемых пестицидов с концентрацией 10.0 нг/мл в матрице кормовой кукурузной муки.

Как правило, при разработке мультикомпонентного MC метода ввод MRM переходов определяемых соединений и их оптимизированных параметров довольно трудоемкая задача. В данной работе при создании MC метода параметры MRM переходов автоматически генерировались путем выбора интересующих пестицидов из встроенной библиотеки программного обеспечения Simplicity 3Q, а для получения точных результатов с хорошей повторяемостью скорость сбора данных автоматически оптимизировалась соответствующим встроенным алгоритмом, что обеспечивало сбор данных по 12 - 15 точек для описания каждого пика (рисунок 2). Это позволило существенно сэкономить время и упростить разработку MC метода.

Рисунок 2. Оптимизация скорости сбора данных в зависимости от установленной ширины пика.

Матричные эффекты (МЭ) являются одной из основных проблем, с которой сталкиваются аналитики при разработке ВЭЖХ-МС/МС метода, особенно это актуально для анализа пищевых продуктов и кормов для животных, что объясняется сложностью большинства матриц в этой области.

В данной работе МЭ оценивались путем сравнения значений откликов детектора на определяемый компонент, рассчитанных из калибровочных кривых, полученных для калибровок с использованием матрицы и без нее. Значения матричного эффекта для каждого компонента рассчитывали по процентной разнице откликов детектора, полученных в присутствии матрицы (Y) и без нее (X), т.е. $M\mathcal{P}(\%) = (Y-X)/X \times 100$. Положительное значение матричного эффекта свидетельствует об усилении аналитического сигнала определяемого компонента в присутствии матрицы, а отрицательное значение - об его уменьшении. Как видно из рисунков 3, 4 и таблицы 3, данная величина зависит от определяемого соединения, например, для аллидохлора и флусилазола характерен положительный матричный эффект (усиление сигнала), а для кломазона и пиримифос-метила – отрицательный (ослабление сигнала). Из рисунка 4 и таблицы 3 видно, что полученные значения МЭ для всех целевых компонентов, составляют менее 10% за исключением триазофоса (МЭ триазофоса = 10.4%). Согласно руководству SANTE это означает, что для количественного определения всех целевых пестицидов можно использовать калибровочные кривые, построенные с использованием чистых стандартных растворов (без матрицы). (Валидационные требования SANTE для аналитических методов определения остаточных количеств пестицидов в продуктах питания и кормах для животных допускают 20% усиление или подавление сигнала в присутствии матрицы, т.е. МЭ ≤ 20%).

Рисунок 3. Калибровочные кривые аллидохлора, кломазона, флусилазола, пиримифос-метила, построенные с использованием матрицы и без нее.

Рисунок 4. Установленные значения матричных эффектов для определяемых пестицидов.

Несмотря на то, что установленные значения МЭ были невелики и с запасом удовлетворяли требованиям SANTE, для количественное определение пестицидов использовали внутренний стандарт (BC) - трифенилфосфат (ТФФ). Прежде всего, ВС использовали исходя из многообразия и сложности кормовых матриц (вероятности возникновения значительных МЭ), а также для уменьшения общей неопределенности анализа. Типичные примеры калибровочных кривых определяемых пестицидов, построенных с использованием BC, показаны на рисунке 5.

Рисунок 5. Калибровочные кривые аллидохлора, кломазона, флусилазола, пиримифос-метила, построенные с использованием внутреннего стандарта.

SANTE/12682/2019.

Согласно нормативному документу ЕС SANTE/12682/2019 для достоверной идентификации пестицидов в анализируемой матрице необходимо, чтобы время удерживания и соотношение ионов как минимум двух MRM переходов для каждого целевого компонента находились в допустимых пределах. В представленном методе использовали два MRM перехода для каждого пестицида, при этом установленная допустимая толерантность для соотношения количественного и подтверждающего ионов не превышала 30% как для стандартных растворов, так и для анализируемых образцов. Для всех определяемых пестицидов разница времен удерживания в стандартном растворе и испытуемых матрицах лежала в пределах 0.1 минуты.

Линейность.

Калибровочные кривые для всех определяемых пестицидов были построены в диапазоне от 1 до 100 нг/мл с использованием стандартных растворов и внутреннего стандарта. Все калибровочные кривые определяемых компонентов имели хорошую линейность - квадрат коэффициента линейной корреляции (R²) для всех аналитов был больше 0.99 (рисунок 5 и таблица 3).

Предел количественного определения (ПКО).

Значения ПКО целевых компонентов были установлены помощью модельных растворов, приготовленных с использованием матрицы, на основе значения сигнал/шум для количественного и подтверждающего ионов > 10 (*S*/*N* _{К И, П И} > 10) и приведены в таблице 3. Полученные значения ПКО целевых компонентов лежали в диапазоне от 0.01 до 3.84 мкг/кг, при этом для 88 из 94 пестицидов

(для 94% пестицидов) значения ПКО были равны или ниже 1 мкг/кг (ПКО ≤ 1мкг/кг), что существенно меньше ПДК (10 мкг/кг), установленных в регламенте ЕС 396/2005.

Повторяемость и воспроизводимость результатов.

Повторяемость (intra-day repeatability) и воспроизводимость (inter-day reproducibility) результатов определяли по результатам анализа образцов кормовой кукурузной муки с концентрацией целевых пестицидов 25 мкг/кг в течение 4 разных дней (суммарное количество определений равно 52). Полученные значения относительного среднеквадратического отклонения (ОСКО, %) для повторяемости и воспроизводимости результатов приведены на рисунках 6, 7 и в таблице 3. Как видно из приведенных данных, для всех целевых компонентов значения ОСКО повторяемости и воспроизводимости результатов приведены компонентов значения ОСКО повторяемости и воспроизводимости меньше 20%, установленных руководством SANTE/12682/2019.

Рисунок 6. Установленные значения ОСКО % для повторяемости результатов.

Рисунок 7. Установленные значения ОСКО % для воспроизводимости результатов.

Анализ образцов.

С помощью разработанного метода были проанализированы различные корма для животных. В большинстве образцов определяемые пестициды отсутствовали или их концентрация была меньше установленного значения ПКО. Однако встречались образцы, в которых содержание отдельных пестицидов даже превышало значения ПДК. Рисунке 8 показано сравнение MRM хроматограмм пиридабена, малатиона и пиримифос-метила, полученных при анализе модельных растворов и реальных образцов. Как видно из рисунка 8, разница между временами удерживания и ионными соотношениями, полученная при анализе модельных растворов и реальных образцов, полностью удовлетворяет требованиям руководства SANTE/12682/2019.

Рисунок 8. Сравнение MRM хроматограмм пиридабена, малатиона и пиримифос-метила, полученных при анализе модельных растворов и реальных образцов.

Заключение

Разработан чувствительный и селективный мультикомпонентный метод определения 94 пестицидов в кормах для животных с помощью ВЭЖХ-МС/МС PerkinElmer LX50-QSight 220. Установленные валидационные характеристики метода полностью отвечают требованиям нормативных документов, действующих на территории Европейского союза и Таможенного союза стран ЕАЭС, регламентирующих содержание определяемых пестицидов в кормах для животных.

Таблица 3. Значения квадрата коэффициента линейной корреляции (R²), матричного эффекта (МЭ), предела количественного определения (ПКО), относительных среднеквадратичных отклонений (ОСКО%) повторяемости и воспроизводимости результатов для определяемых пестицидов.

Компонент	R ²	МЭ%	ПКО	ОСКО%	ОСКО%	
	(c BC)	(без ВС)	(мкг/кг)	повторяемость	воспроизводимость	
2,4-Диметилфенил	0.9996	1.2	≤0.5	4.6	10.2	
формамид						
Ацетохлор	0.9994	-2.7	≤5	10.3	12.6	
Алахлор	0.9992	3.9	≤5	6.2	8.8	
Аллидохлор	0.9998	4.2	≤0.5	4.7	16.1	
Атразин	0.9997	3.3	≤0.5	5.1	10.8	
Азинофос-этил	0.9998	0.1	≤1	7.5	13.9	
Азинофос-метил	0.9998	-0.5	≤0.5	6.4	16.0	
Бромфенвинфос	0.9988	1.9	≤0.5	2.2	10.9	
Бупиримат	0.9994	3.4	≤0.5	7.8	14.3	
Карбофенотион	0.9993	7.9	≤0.5	7.5	7.3	
Хлорфенвинфос	0.9995	2.5	≤0.5	3.5	10.8	
Хлорпирифос-метил	0.9996	0.2	≤0.5	5.1	6.4	
Хлортиофос	0.9993	5.3	≤0.5	5.4	6.8	
Кломазон	0.9997	-0.9	≤0.5	4.9	18.2	
Кумафос	0.9998	1.3	≤0.5	3.1	13.7	
Циклоат	0.9995	4.2	≤0.5	4.8	10.4	
Ципродинил	0.9992	3.1	≤1	6.0	8.9	
Ди-аллат	0.9991	2.8	≤1	5.4	8.9	
Диазинон	0.9997	3.1	≤0.5	2.5	11.1	
Диметахлор	0.9995	0.5	≤0.5	5.2	16.8	
Дифенамид	0.9986	-2.4	≤0.5	5.6	15.3	
Дисульфотон	0.9990	0.7	≤1	7.8	18.4	
Эдифенфос	0.9997	6.4	≤5	12.1	19.6	
ЭПН	0.9999	1.6	≤0.5	4.4	8.0	
Этион	0.9992	1.6	≤0.5	3.7	5.7	
Этофенпрокс	0.9994	2.3	≤0.5	4.4	8.2	
Этридиазол	0.9996	-1.3	≤1	7.0	7.6	
Фенамифос	0.9993	-0.9	≤0.5	4.0	6.3	
Фентион	0.9990	1.0	≤0.5	5.0	9.0	
Фипронил	0.9996	0.7	≤0.5	8.6	14.1	
Флудиоксонил	0.9996	-0.1	≤0.5	5.5	19.2	
Флукинконазол	0.9993	1.1	≤0.5	7.1	11.6	
Флуридон	0.9996	0.5	≤0.5	4.9	17.9	
Флусилазол	0.9991	5.0	≤0.5	6.1	6.0	
Флутоланил	0.9992	2.2	≤0.5	5.3	15.5	
Флутриафол	0.9985	2.7	≤0.5	3.8	12.6	
Фолпет	0.9979	-2.4	≤1	9.9	13.1	
Фонофос	0.9982	2.5	≤1	3.7	8.3	
Гексазинон	0.9986	2.7	≤0.5	5.7	7.9	
Ипродион	0.9990	1.3	≤0.5	5.6	17.3	

Таблица 3. (продолжение)

Компонент	R ²	МЭ%	ПКО	ОСКО%	ОСКО%
	(c BC)	(без ВС)	(мкг/кг)	повторяемость	воспроизводимость
Исазофос	0.9975	1.1	≤0.5	5.7	10.5
Ленацил	0.9979	4.7	≤0.5	4.6	11.9
Лептофос	0.9900	-0.7	≤2	5.4	14.8
Линурон	0.9993	2.5	≤0.5	5.5	18.3
Малатион	0.9980	1.0	≤0.5	5.6	12.9
Метазахлор	0.9989	3.4	≤0.5	3.6	13.1
Метакрифос	0.9995	-1.8	≤0.5	6.2	10.1
Метоксихлор	0.9978	0.8	≤0.5	4.8	6.8
Метолахлор	0.9992	3.7	≤0.5	4.1	5.5
Мевинфос	0.9988	2.0	≤0.5	4.5	4.4
Миклобутанил	0.9985	2.5	≤0.5	5.6	10.9
Норфлуразон	0.9979	2.7	≤0.5	4.1	12.2
Оксадиазон	0.9972	2.6	≤0.5	4.5	7.1
Паклобутразол	0.9994	-1.9	≤0.5	4.8	10.6
Паратион (тиофос)	0.9987	1.6	≤1	5.4	8.9
Пебулат	0.9994	4.1	≤0.5	3.5	6.9
Форат	0.9989	-2.6	≤0.5	4.6	12.2
Фозалон	0.9982	-1.1	≤2	5.5	8.0
Фосмет	0.9986	-0.2	≤0.5	2.3	12.5
Пиперонилбутоксид	0.9983	-5.0	≤0.5	4.5	22.0
Пиримифос-этил	0.9980	2.6	≤0.5	3.6	5.5
Пиримифос-метил	0.9999	0.0	≤0.5	4.1	5.6
Претилахлор	0.9988	-0.2	≤0.5	2.8	10.7
Прохлораз	0.9987	3.2	≤1	4.0	6.7
Профенофос	0.9992	2.4	≤0.5	3.4	13.7
Пропахлор	0.9984	0.6	≤0.5	4.1	6.8
Пропанил	0.9981	0.7	≤1	3.9	13.0
Пропаргит	0.9988	0.7	≤0.5	5.7	18.7
Пропизохлор	0.9991	3.7	≤0.5	5.3	5.2
Пропизамид	0.9995	1.1	≤5	7.7	11.8
Протиофос	0.9983	-0.4	≤0.5	5.8	11.6
Пирахлофос	0.9995	0.3	≤0.5	4.4	7.0
Пиразофос	0.9974	-0.9	≤0.5	3.5	14.2
Пиридабен	0.9981	0.5	<u>≤0.5</u>	2.9	11.3
Пиридафентион	0.9986	3.4	<0.5	4.1	6.0
Пирипроксифен	0.9988	-0.7	<0.5	5.6	11.1
Пириметанил	0.9975	8.4	< 0.5	5.0	6.8
Квиналфос	0.9981	-3.7	<0.5	6.1	16.8
Сульфотен	0.9990	2.6	<0.5	5.8	10.9
Сульцронов	0.9990	2.7	<0.5	4.1	6.6
Тебуконязол	0.9989	1.5	<0.5	5.3	5.3
Тебуфенцирал	0.9995	5.1	0.5	6.1	14.2
Тербания	0.9980	0.7	<0.5	5.4	9.6
героация	0.7707	0.7		J.T	7.0

Таблица 3. (продолжение)

Компонент	R ²	МЭ%	ПКО	ОСКО%	ОСКО%
	(c BC)	(без ВС)	(мкг/кг)	повторяемость	воспроизводимость
Тербуфос	0.9981	-0.5	≤0.5	4.4	8.9
Тербутилазин	0.9990	-1.2	≤1	9.9	14.9
Тетрахлорвинфос	0.9988	-1.1	≤0.5	5.4	11.7
Толклофос-метил	0.9992	1.1	≤0.5	4.0	8.3
Триадимефон	0.9980	-1.1	≤2	5.8	13.7
Триадименол (байтан)	0.9988	-0.4	≤0.5	6.8	10.3
Три-аллат (триаллат)	0.9981	-2.1	≤1	9.6	14.8
Триазофос	0.9988	10.4	≤0.5	6.6	6.6
Трициклазол	0.9986	1.2	≤0.5	5.5	11.1
Трифлумизол	0.9990	1.0	≤0.5	4.5	13.5
Винклозолин	0.9987	3.4	≤0.5	4.5	9.5

Список литературы

[1] EU Reference Laboratories for Residues of Pesticides, EURL Cereals and Feeding Stuff. Pesticide residues in animal feeding stuff. https://www.eurl-pesticides.eu/docs/public/home.asp?LabID=100&Lang=EN

[2] European Commission (EU). Regulation EC No 396/2005 on Maximum Residue Levels of Pesticides in or on Food and Feed of Plant and Animal Origin. 2006, 1881 (February 1998), 1 - 5.

[3] European Commission (EU). Method Validation Procedures for Pesticide Residues Analysis in Food and Feed; SANTE/12682/2019.

[4] Anastassiades, M.; Lehotay, S. J.; Štajnbaher, D.; Schenck, F. J. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and «Dispersive Solid-Phase Extraction» for the Determination of Pesticide Residues in Produce. Journal of AOAC INTERNATIONAL 2003, 86 (2), 412–431. <u>https://doi.org/10.1093/jaoac/86.2.412</u>.

[5] Stachniuk, A. LC-MS/MS Determination of Pesticide Residues in Fruits and Vegetables. In Bioactive Molecules in Food; Merillon, J.-M., Ramawat, K. G., Eds.; Reference Series in Phytochemistry; Springer International Publishing: Cham, 2019; pp 2137-2161. <u>https://doi.org/10.1007/978-3-319-78030-6_82</u>.

[6] Mol, H. G. J.; Zomer, P.; Garcia Lopez, M.; Fussell, R. J.; Scholten, J.; de Kok, A.; Wolheim, A.; Anastassiades, M.; Lozano, A.; Fernandez Alba, A. Identification in Residue Analysis Based on Liquid Chromatography with Tandem Mass Spectrometry: Experimental Evidence to Update Performance Criteria. Analytica Chimica Acta 2015, 873, 1–13. <u>https://doi.org/10.1016/j.aca.2015.03.007</u>.

Scheltec авторизованный дистрибьютор PerkinElmer в странах СНГ, Грузии и Монголии <u>http://www.scheltec.ru</u>

PerkinElmer, Inc. 940 Winter Street Waltham, MA 02451 USA P: (800) 762-4000 or (+1) 203-925-4602 www.perkinelmer.com

For a complete listing of our global offices, visit www.perkinelmer.com/ContactUs

Copyright ©2020, PerkinElmer, Inc. All rights reserved. PerkinElmer* is a registered trademark of PerkinElmer, Inc. All other trademarks are the property of their respective owners.