

APPLICATION NOTE

Жидкостная хроматография / Масс-спектрометрия

Авторы: Mingli Zhu, Weifeng Zhang

Guangzhou Agricultural Products Quality and Safety Guangzhou, China

Lina Tang

Xiamen Entry-Exit Inspection and Quarantine Bureau Fujian Province, China Lizhong Yang, Xiangdong Zhou, Chengyuan Cai, Yongming Xie PerkinFlmer, Inc.

PerkinElmer, Inc.
Shanghai, China
Feng Qin, Jingcun Wu
PerkinElmer, Inc
Toronto, Canada

Анализ пестицидов и красителей в вине

Введение

Вина могут содержать пестициды и фунгициды, которыми обрабатывался виноград в процессе своего роста. Кроме того, вино может содержать различные добавки, которые преднамеренно использовались недобросовестным производителем для улучшения его цвета и вкусовых качеств. Вина, содержащие в своем составе пестициды и запрещенные добавки, могут нанести непоправимый вред здоровью потребителя. В настоящее время для определения этих компонентов в вине используются различные аналитические методы [1 - 4]. Цель данного исследования – разработка простого, быстрого и высокочувствительного метода для одновременного определения пестицидов и красителей в вине.

Экспериментальная часть

Оборудование и программное обеспечение

Хроматографическое разделение проводили на УВЭЖХ LX-50 (PerkinElmer) с масс-спектрометрическим детектором QSight[™] 220 (масс-анализатор - тройной квадруполь) (PerkinElmer). Управление прибором, сбор и обработку данных осуществляли с помощью программного обеспечения Simplicity $3Q^{™}$ (PerkinElmer).

Пробоподготовка

В пробирку для центрифугирования помещали 1.0 мл анализируемого образца и 9.0 мл воды очищенной, содержимое пробирки тщательно перемешивали и центрифугировали со скоростью 6000 об/мин в течение 5 минут. После центрифугирования надосадочную жидкость (супернатант) без дополнительной фильтрации переносили в виалу для автодозатора жидкостного хроматографа и анализировали.

Хроматографические условия.

Хроматографическая колонка – PerkinElmer Brownlee SPP C18 column (4.6 x 100 мм, 2.7 μ м). Температура термостата колонок – 30°С. Подвижная фаза (**A**): 5 mM ацетат аммония в воде, подвижная фаза (**B**) – ацетонитрил. Скорость потока – 0.8 мл/мин, градиентное элюирование (таблица 1). Объем вводимой пробы – 10 мкл.

Параметры масс-спектрометра.

Параметры источника ионизации масс-спектрометрического детектора приведены в таблице 2. Времена удерживания, пределы количественного определения (ПКО), MRM переходы и оптимизированные параметры масс-анализатора для MRM переходов определяемых соединений представлены в таблице 3.

Таблица 1. Программа градиентного элюирования

Шаг	Время (мин)	А% 5 mM Ацетат аммония	В% Ацетонитрил
1	0.0	95	5
2	3.0	60	40
3	5.0	50	50
4	8.0	20	80
5	9.0	5	95
6	11.0	5	95
7	11.1	95	5
8	13	95	5

Таблица 2. Параметры источника ионизации масс-спектрометрического детектора

Напряжение ESI +		5500 B
Осушающий газ		70 единиц
Распыляющий газ	(газ	200 единиц
распылителя)		
Температура источника		500°C
Температура	HSID	320°C
интерфейса		
Режим работы	масс-	MRM
анализатора		

Таблица 3. Времена удерживания $t_{\rm R}$, пределы количественного определения (ПКО), MRM переходы и оптимизированные параметры масс-анализатора для MRM переходов определяемых соединений.

No	Анализируемы й компонент	мкм подтверждающи		<i>t</i> _R (мин)	СЕ/эВ *	EV/B* *	ПКО мкг/ л	
		йи	ОН					
1	Тартразин	468.9	451.0	1.45	-22	23	50	
	тартразин	468.9	200.1	1.15	-33	23	50	
2	Новый красный	545.9	504.0	1.85	-20	24	50	
	Повый красный	545.9	341.1	1.05	-34	24	30	
3	Кислотный	538.8	348.1	1.99	-41	27	50	
3	красный-27	538.8	223.0	1.99	-37	27	30	
1	4 Кармин	538.9	158.2	2,29	-49	30	50	
4	Кармин	538.9	223.1	2.29	-37	30		
5	Co =	408.7	392.1	2.50	-26	25	50	
5	Солнечный закат	408.7	236.1	2.56	-29	25		
	Красный	452.9	217.1		-30	17		
6	очаровательный АС	452.9	202.2	2.80	-54	17	10	
7	1505,6111	458.8	223.2	3,26	-34	20	10	
/	Азорубин	458.8	442.0	3.20	-22	20		
	Бриллиантовый	749.2	306.1	2.45	-59	75	1.0	
8	голубой	749.2	171.2	3.45	-71	75	10	
	2011-001111	836.7	583.0	2.01	-69	67	10	
9	Эритрозин В	836.7	329.0	3.81	-86	67	10	
10	Метамидофос	142.0	94.0	1.97	-11	22	10	

		142.0	125.0		10	22		
		142.0	125.0		-18			
11	Тиаметоксам	292.0	211.0	3.48	-17	20	0.5	
		292.0	181.0		-30	20		
12	Карбендазим	192.0	160.0	3.97	-24	28	0.5	
	' ' '	192.0	132.0		-40	28		
13	Диметоат	230.0	125.0	4.09	-29	22	0.5	
	До.о	230.0	199.0		-12	22		
14	Ацетамиприд	223.0	126.0	4.19	-29	30	0.5	
17	Ацетингрид	223.0	99.0	4.13	-54	30		
15	Тиабендазол	202.2	175.2	4.40	-45	33	0.5	
13		202.2	131.2	4.40	-57	45	0.5	
16	Пинатанга	388.0	301.0	6.87/7.1	-26	40	0.5	
10	Диметоморф	388.0	165.0	1	-41	40	0.5	
17	П	200.0	107.0	7.40	-32	50	_	
17	Пириметанил	200.0	82.0	7.48	-32	50	5	
10	_	302.1	97.2	7.07	-32	57	5	
18	Фенгексамид	302.1	55.2	7.97	-71	77		
4.0	Азоксистробин	404.0	372.0	7.99	-19	25	0.5	
19		404.0	344.0		-33	25		
	0 Эпоксиконазол	330.0	121.0		-22	25	0.5	
20		330.0	101.0	8.04	-50	25		
	_	294.0	197.0	8.08	-20	30	0.5	
21	Триадимефон	294.0	225.0		-16	30		
		343.0	307.0	8.09	-25	25		
22	Боскалид	343.0	140.0		-28	25	1	
		376.0	349.0		-26	25		
23	Флуквинконазол	376.0	307.0	8.16	-34	25	1	
		314.0	70.0		-24	25		
24	Гексаконазол	314.0	159.0	8.44	-36	25	0.5	
		297.1	159.1		-42	30		
25	Имазалил	297.1	161.1	8.49	-42	30	1	
		283.8	70.1		-42	20		
26	Пенконазол	283.8	159.1	8.51	-23 -48	20	0.5	
27	Малатион	331.0	127.0	8.51	-10	20	5	
		331.0	285.0		-16	20		
28	В Прохлораз	376.0	308.0	8.84	-16	20	0.5	
		376.0	70.0		-37	20		
29	Ципродинил	226.3	93.2	8.87	-51	66	0.5	
	•	226.3	108.3		-35	56		
30	Фоксим	299.0	77.0	9.40	-46	20	1	
30	VONCHIA	299.0	129.0	J. TU	-18	20		

21	Трифлоксистроб 409.2 186.1		186.1	0.52	-43	31	٥٦
31	ин	409.2	206.2	9.52	-33	21	0.5
22	V	350.0	198.0	10.00	-23	25	٥ ـ
32	Хлорпирифос	350.0	97.0	10.00	-47	25	0.5

^{*} CE (collision energy) – энергия соударений

Обсуждение результатов

Хроматограмма на рисунке 1 демонстрирует качественный и количественный анализ при одновременном определении 23 пестицидов и 9 красителей в вине с помощью разработанного метода.

Как видно из таблицы 3, значения ПКО для целевых компонентов в вине находятся в диапазоне от 0.5 до 50 мкг/л.

Для выбора оптимальной процедуры пробоподготовки было изучено влияние степени разбавления образцов и матричных эффектов на величину аналитического сигнала (чувствительность метода).

Для этого были проанализированы модельные растворы с содержанием красителей и пестицидов 100 и 10 мкг/л соответственно, при этом в качестве растворителей были использованы образцы вина, разбавленные водой в соотношениях 1:2, 1:5, 1:10 и 1:20, получая, таким образом 4 модельных раствора. Результаты сравнения отклика детектора для каждого компонента в зависимости от степени разбавления образца суммированы на рисунках 2 и 3. Как видно из рисунков 2 и 3 отклик (аналитический сигнал) возрастал с увеличением степени разбавления вина, что свидетельствует об уменьшении матричных эффектов, в основном эффекта подавления ионизации (ионной супрессии), при увеличении степени разбавления. Основываясь на полученных данных, была выбрана степень разбавления образца 1:10.

В качестве возможного способа очистки образцов от мешающих примесей был выбран метод дисперсионной твердофазной экстракции (d-SPE – Дисперсионная ТФЭ), применяющийся в методологии QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe - Быстро, Просто, Дёшево, Эффективно, Надежно и Безопасно). Дисперсионную ТФЭ проводили с использованием трех различных сорбентов, которые широко применяются в QuEChERS: анионообменный сорбент на основе первичных и вторичных аминов (PSA), сорбент C18 и графитированная сажа (GCB).

На рисунках 4 и 5 представлены сравнения откликов детектора для компонентов в образцах вин с добавкой красителей и пестицидов в концентрациях 200 мкг/л и 20 мкг/л соответственно в зависимости от пробоподготовки: простое разбавление 1:10; разбавление 1:10 и очистка с помощью PSA, C18 и GCB. Из данных, представленных на рисунках 4 и 5, видно, что наилучший отклик для большинства компонентов был получен при простом разбавлении проб в 10 раз без дополнительной процедуры очистки. Наихудший результат был получен при использовании сорбентов C18 и GCB, что объясняется сорбцией компонентов, имеющих в своей структуре неполярные группы.

^{**} **EV –** (Entrance Voltage) – входное напряжение на интерфейсе переноса ионов в масс-анализатор

При необходимости анионообменный сорбент на основе первичных и вторичных аминов (PSA) может быть использован для удаления сахаров, жирных кислот, органических кислот и антоциановых красителей.

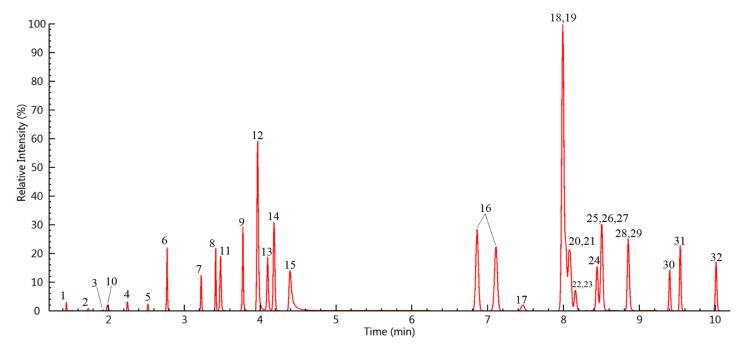


Рисунок 1. Хроматограмма образца вина с добавкой 9 красителей (100 мкг/л) и 23 пестицидов (10 мкг/л). Компоненты указаны в таблице 3.

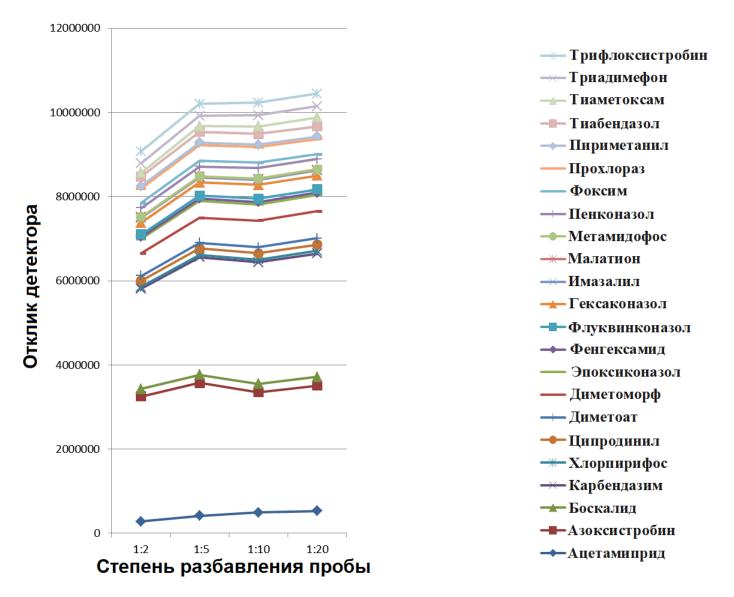


Рисунок 2. Зависимость откликов детектора для компонентов от степени разбавления пробы при концентрации пестицидов (10 мкг/л).

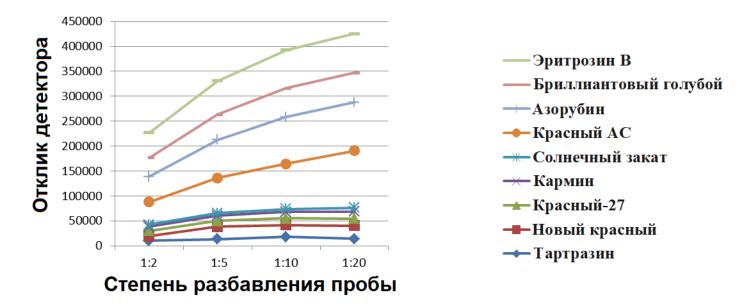


Рисунок 3. Зависимость откликов детектора для компонентов от степени разбавления пробы при концентрации красителей (100 мкг/л).

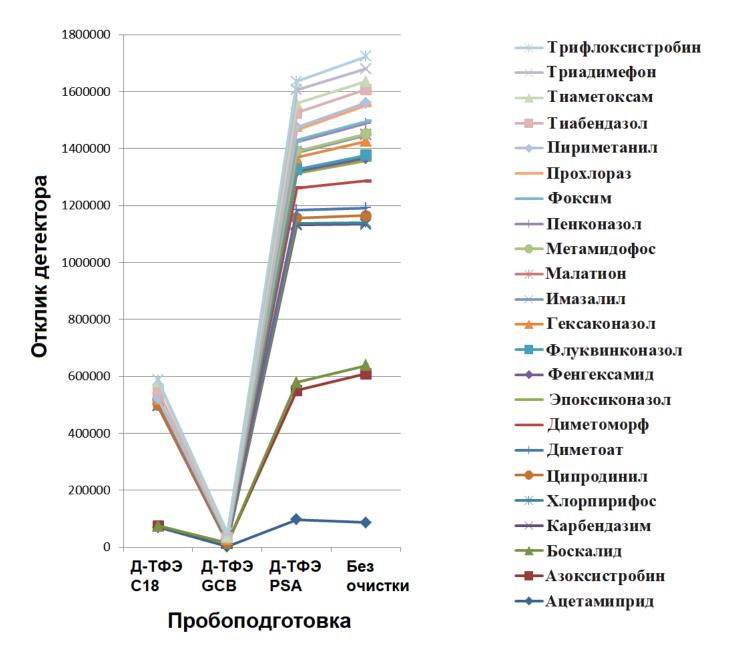


Рисунок 4. Зависимость отклика детектора для компонентов от способа пробоподготовки при концентрации пестицидов (20 мкг/л).

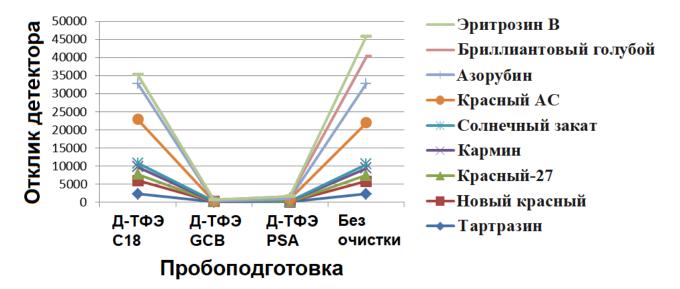


Рисунок 5. Зависимость отклика детектора для компонентов от способа пробоподготовки при концентрации красителей (200 мкг/л).

Калибровочные кривые для количественного определения компонентов строили на винной матрице (в качестве растворителя для калибровочных растворов использовалось вино, разбавленное в 10 раз). Калибровочные графики строили в диапазоне концентраций от 1 до 1000 мкг/л для красителей и от 0.5 до 100 мкг/л для пестицидов. Калибровочные графики для всех компонентов имели хорошую линейность (квадрат коэффициента корреляции \mathbb{R}^2 больше 0.99).

Для оценки степени извлечения компонентов использовались образцы вина с концентрациями целевых компонентов 50, 100 и 500 мкг/л. Степень извлечения для всех компонентов составила 85-115% при СКО менее 11%. Разработанный метод использовали для анализа 10 реальных вин, полученные результаты представлены в таблице 4.

Таблица 4. Результаты анализа (мкг/л) десяти различных вин.

Обнаруженн	Номер образца									
ый компонент	1	2	3	4	5	6	7	8	9	10
Ацетамиприд	-	-	4.1	10	-	-	-	-	-	-
Азоксистробин	-	-	11.5	-	-	-	-	-	-	_
Боскалид	-	33. 5	173. 1	87.3	53. 1	345. 8	10. 7	245. 5	16. 1	42. 4
Карбендазим	2.8	-	-	-	-	-	164	16	-	-
Хлорпирифос	3.4	-	-	-	-	-	-	-	-	-
Ципродинил	33. 9	-	-	10.8	-	82.6	-	-	ı	-
Диметоат	-	-	-	5.7	-	-	27	-	-	-
Диметоморф	-	-	-	-	-	134.	90.	100.	-	_

						3	2	2		
Фенгексамид	-	-	-	180. 3	-	275. 8	-	434. 4	-	-
Пириметанил	-	-	-	43.2	-	-	115	136. 4	-	-
Тиабендазол	-	-	-	6.1	_	-	-	-	-	_
Тиаметоксам	-	-	-	-	-	20.2	-	_	_	_

Заключение

Разработан и валидирован быстрый, чувствительный и селективный метод для одновременного определения 23 пестицидов И красителей В вине. Преимущество данного метода заключается в одновременном определении пробоподготовки пестицидов красителей И простейшей принципу «разбавляй и анализируй». Полученные результаты показали, что правильность (воспроизводимость) повторяемость метода соответствует требованием аналитических лабораторий, занимающихся рутинным мониторингом вин.

Список литературы

- [1]. Guo J, Zhu K, Zheng S, Chen Q, Lin M. Food and Fermentation Industries 2017, 43(1):1
- [2]. Wang J, Chow W, Leung D. Anal. Bioanal. Chem., 2010, 396:1513-1538.
- [3]. Li Y, Zheng Y, Xiong C, Zeng Y, Chen S. Chinese Journal of Chromatography 2013, 31(8
- [4]. Gui Q, Liu H, Xu W, Gong Y. Journal of Chinese Mass Spectrometry Society, 2015, 36(2

PerkinElmer, Inc. 940 Winter Street Waltham, MA 02451 USA P: (800) 762-4000 or (+1) 203-925-4602 www.perkinelmer.com

For a complete listing of our global offices, visit www.perkinelmer.com/ContactUs

Copyright ©2017, PerkinElmer, Inc. All rights reserved. PerkinElmer[®] is a registered trademark of PerkinElmer, Inc. All other trademarks are the property of their respective owners.